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Abstract

Cachingis a populartechniquefor reducingboth server load anduserresponsetime in dis-
tributedsystems.In this paper, we areinterestedin thequestionof whethercachingmight be
effectivefor searchenginesaswell. Westudytwo realsearchenginetracesby examiningquery
locality andits implicationsfor caching.Our traceanalysisresultsshow that: (1) Querieshave
significantlocality, with queryfrequency following a Zipf distribution. Very popularqueries
aresharedamongdifferentusersandcanbe cachedat serversor proxies,while 16%to 22%
of the queriesarefrom the sameusersandshouldbe cachedat the userside. Multiple-word
queriesaresharedlessandshouldbecachedmainlyat theuserside.(2) If cachingis to bedone
at theuserside,short-termcachingfor hourswill beenoughto cover querytemporallocality,
while server/proxycachingshouldbe basedon longerperiodssuchasdays. (3) Most users
havesmalllexiconswhensubmittingqueries.Frequentuserswhosubmitmany searchrequests
tendto reusea small subsetof wordsto form queries.Thus,with proxy or usersidecaching,
prefetchingbasedonuserlexicon lookspromising.
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1 Introduction

Cachingis an important techniqueto reduceserver workloadand userresponsetime. For
example,clientscansendrequeststo proxies,which thenrespondusinglocally cacheddata.
By cachingfrequentlyaccessedobjectsin the proxy cache,the transmissiondelaysof these
objectsareminimizedbecausethey areserved from nearbycachesinsteadof remoteservers.
In addition,by absorbinga portionof theworkload,proxy cachescanincreasethecapacityof
bothserversandnetworks,therebyenablingthemto serviceapotentiallylargerclientele.

We areinterestedin thequestionof whethercachingmight beeffective for searchengines
aswell. Becauseservinga searchrequestalsorequiresa significantamountof computationas
well asI/O andnetworkbandwidth,cachingsearchresultscouldimproveperformancein three
ways. First, repeatedqueryresultsarefetchedwithout redundantprocessingto minimize the
accesslatency. Second,becauseof thereductionin server workload,scarcecomputingcycles
in theserver aresaved, allowing thesecyclesto be appliedto moreadvancedalgorithmsand
potentiallybetterresults.Finally, by disseminatinguserrequestsamongproxy caches,we can
distributepartof thecomputationaltasksandcustomizesearchresultsbasedonusercontextual
information.

AlthoughWebcachinghasbeenwidely studied,few researchershave tackledtheproblem
of cachingsearchengineresults. While it is alreadyknown that searchenginequerieshave
significantlocality, several importantquestionsarestill open:

� Whereshouldwe cachesearchengineresults? Shouldwe cachethemat the server’s
machine,at theuser’s machine,or in intermediateproxies?To determinewhich typeof
cachingwouldresultin thebesthit rates,weneedto look atthedegreeof querypopularity
ateachlevel andthe“shareness”of thequeries.1

� How long shouldwe keepa queryin cachebeforeit becomesstale?That is, do queries
have strongtemporallocality?

� Whatotherbenefitsmightaccruefrom caching?Sincebothproxyandclientsidecaching
aremoredistributedwaysof servingsearchrequests,canwe prefetchor rerankquery
resultsbasedon individualuserrequirements?

In this paper, we studytwo realsearchenginetracesandinvestigatetheir implicationsfor
cachingsearchengineresultswith respectto the above questions.Our analysisyielded the
following key results:

� Querieshave significantlocality. About 30%to 40%of queriesarerepeatedqueriesthat
have beensubmittedbefore.Queryrepetitionfrequency followsa Zipf distribution. The
popularquerieswith highrepetitionfrequenciesaresharedamongdifferentusersandcan

1The sharenessof a queryA is computedas the numberof distinct userswho submittedA over sometime
period.Thus,sharenessis ameasureof a query’spopularityacrossmultipleusers.
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becachedat serversor proxies.Queriesarealsofrequentlyrepeatedby thesameusers.
About16%to 22%of all queriesarerepeatedqueriesfrom thesameusers,whichshould
becachedat theuserside. Multiple-word querieshave lesssharenessandthuscanalso
becachedmainlyat theuserside.

� Themajorityof therepeatedqueriesarereferencedagainwithin shorttime intervals.But
thereremainsa significantportion of queriesthat arerepeatedwithin relatively longer
time intervals,which arelargely sharedby differentusers.So if cachingis to be done
at the userside,short-termcachingfor hourswill be enoughto cover query temporal
locality, while server/proxycachingshouldbe basedon longerperiods,on theorderof
days.

� Most usershave small lexicons whensubmittingqueries. Frequentuserswho submit
many searchrequeststendto reusea smallsubsetof wordsto form queries.Thus,with
proxy or usersidecaching,prefetchingbasedon theuser’s lexicon is promising.Proxy
or usersidecachingalsoprovideuswith opportunitiesto improvequeryresultsbasedon
individualuserpreferences,which is animportantfutureresearchdirection.

In therestof thepaper, we first discussrelatedworksin Section1.1. We thendescribethe
traceswe analyzedandsummarizethegeneralstatisticsof thedatain Section2. In Section3,
we focuson repeatedqueriesanddiscussquerylocality in both traces.Section4 presentsour
findingsaboutuserlexiconanalysisandits implications.Finally, wereview analysisresultsand
discusspossiblefutureresearchdirections.

1.1 Related works

Dueto theexponentialgrowth of theWeb,therehasbeenmuchresearchon theimpactof Web
cachingandhow to maximizeits performancebenefits.Most Web browserssupportcaching
documentsin theclient’s memoryor local disk to reducethe responsetime of theclient. De-
ployingproxiesbetweenclientsandserversyieldsanumberof performancebenefits.It reduces
server load,networkbandwidthusageaswell asuseraccesslatency [5, 8, 11,12]. Prefetching
documentsto proxiesor clientshasalsobeenstudiedfor furtherperformanceimprovementby
utilizing useraccesspatterns[4, 7].

Therearealsostudiesof searchenginetraces.Jasenetal analyzedtheExcitesearchengine
traceto determinehow userssearchtheWebandwhatthey searchfor [6]. Silversteinetal ana-
lyzedtheAltavistasearchenginetrace[13], studyingtheinteractionof termswithin queriesand
presentingresultsof a correlationanalysisof the log entries.Althoughthesestudieshave not
focusedon cachingsearchengineresults,all of themsuggestquerieshave significantlocality,
whichparticularlymotivatesourwork.

Queryresultcachinghasalsobeeninvestigatedasa wayto reducethecostof queryexecu-
tion in distributeddatabasesystemsby cachingtheresultsof ’similar’ queries[3, 14]. Recently,
Markatoshasstudiedthequerylocality basedon theExcitetraceandshown that

�������	�
���
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of thequeriesarerepeatedones[9, 10]. He suggestsa server-sidequeryresultcacheandhas
mainly focusedon leveragingdifferentcachereplacementalgorithms.Our work builds on this
by systematicallystudyingquerylocality andderiving theimplicationsfor cachingsearchen-
gineresults.

2 The search engine query traces

The two traceswe analyzedarefrom the Vivisimo searchengine [2] andthe Excite search
engine [1] respectively. In this section,we briefly takea look at the two searchenginesand
review their tracedata.

2.1 The Vivisimo and the Excite search engines

Vivisimo is a clusteringmeta-searchenginethat organizesthe combinedoutputsof multiple
searchengines.Uponreceptionof eachuserquery, Vivisimo combinesthe resultsfrom other
searchenginesandorganizesthesedocumentsinto meaningfulgroups.Thegroupingsaregen-
erateddynamicallybasedon extractsfrom thedocuments,suchastitles, URLs, andshortde-
scriptions.By default,Vivisimo refersto oneor multiple majorsearchengines,including(ca.
Feb. 2001)Yahoo,Altavista,Lycos,Excite,andreturns200combinedresultsusinglogic op-
eration’ALL ’. Vivisimo alsosupportsadvancedsearchoptionswhereuserscanspecifywhich
searchenginesto query, thenumberof resultsto bereturned,andwhich logic operationto be
performedon thequery, includingANY, PHRASEandBOOLEAN.

Exciteis abasicsearchenginethatautomaticallyproducessearchresultsby listing relevant
web sitesandinformationuponreceptionof eachuserquery. Capitalizationof the query is
disregardedand the default logic operationto be performedis ’ALL ’. It alsosupportsother
logic operationslike ’AND’, ’OR’, ’AND NOT’. More advancedsearchingfeaturesof Excite
includewidecardmatching,’PHRASE’ searchingandrelevancefeedbacks.

2.2 The query trace descriptions

TheVivisimoquerytracewascollectedfrom January14,2001to February17,2001,soonafter
theVivisimo launchin earlyJanuary, 2001. Thetracecapturesthebehavior of earlyadopters
who maynot berepresentative of a steadystateusergroup.TheExcitetracewascollectedon
December20,1999.In bothtraces,eachentrycontainsthefollowing fieldsof interest:

� an anonymous ID identifying theuserIP address.For privacy reasons,we do not have
actualuserIP addresses.EachIP addressin the original traceis replacedby a unique
anonymousID.

� a timestamp specifyingwhentheuserrequestis received.Thetimestampis recordedas
thewall clock timewith a 1 secondresolution.
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Trace Vivisimotrace Excitetrace
Start-time 14/Jan/2001:04:0220/Dec/1999:09:00
Stop-time 17/Feb/2001:00:00 20/Dec/1999:16:59
Numberof bytes 657,623,865 118,318,788
Numberof HTTPrequests 2,588,827 notknown
Number of user queries (including
next pagerequests)

205,342 2,477,283

Number of user queries (excluding
next pagerequests)

110,881 1,920,997

Numberof distinctuserqueries 75,343 1,099,682
Numberof multiplewordqueries 77,181 1,429,618
Numberof queriesusingdefaultlogic
operation(ALL)

107,880 1,792,174

Numberof users 20,220 520,883
Averagequeriessubmittedperuser 5.48 3.69
Averagenumberof termsin aquery 2.22 2.63

Table1: Tracestatisticalsummary. Thenumberof HTTPrequestscannotbeinferredfrom the
Excitetracesincethetracedid not containinformationaboutHTTPrequestsfrom users.

� a query string submittedby theuser. If any advancedqueryoperationsareselected,they
will alsobespecifiedin thisstring.

� a number indicatingwhethertherequestis for next pageresultsor a new userquery.

2.3 Statistical summaries of the traces

After extracting a query string from eachtraceentry, we transformthe string to a uniform
formatfor easyprocessing.Weremove stopwordsfrom thequerybecausemostsearchengines
discardthem anyway. We convert all query termsto lower caseand the query is thus case
insensitive, which is alsotypical for searchengines.However, the removal of the stopwords
andthe upper-to-lower caseconversionactuallyhave little impacton our analysisresults. It
affectsour statisticsby about1% andtheeffect couldbeignored. In therestof thepaper, we
use’query’ to denoteall thewordsasa wholeenteredby theuserin a querysubmission,and
’words’ or ’ terms’to denotetheindividualwordscontainedin auserquery. Becausewecannot
distinguishuserswhousedmultiple IP addressesor userswhosharedIP addressesin thetrace,
we uniformly use’user’ to denotetheIP addresswherethequerycamefrom.

Table1 summarizesthe statisticsaboutthe traces.TheExcite tracelastsfor 8 hoursin a
singledayandtheVivisimo tracewascollectedmorerecentlyover a periodof 35 days.Thus,
the two tracesprovide uswith both long-termandshort-termviews to userqueriessincethey
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standfor differenttime scales.Several factsareobvious from this summaryfor both traces.
First,usersdonot issuemany next-pagerequests.Lessthantwo pagesonaverageareexamined
for eachquery. Second,usersdo repeatqueriesa lot. Over32% of thequeriesin theVivisimo
tracearerepeatedonesthathave beensubmittedbeforeby eitherthe sameuseror a different
user, while morethan42% of thequeriesarerepeatedqueriesin theExcite trace. Third, the
majority of usersdo not useadvancedqueryoptions: 97% of the queriesfrom the Vivisimo
traceand93% of thequeriesfrom theExcite traceusethe defaultlogic operationofferedby
thecorrespondingsearchengines.Fourth,userson averagedonot submita lot of queries.The
averagenumbersof queriessubmittedby a userare5.48 and3.69 respectively. Finally, about
70% of the queriesconsistof morethanoneword, althoughthe averagequerylengthis less
than threeterms,which is short. Figures1 shows the query lengthdistributionsof the two
traces.We canobserve that mostof the queriesarelessthanfive termslong. Overall, these
resultsareconsistentwith thosereportedin [6] and [13] andthusarenotsurprising.
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Figure1: Userquerydistributionaccordingto thenumberof wordsin eachquery

3 Query locality and its implications

As mentionedin Section2.3,32%to 42%of thequeriesin thetracearerepeatedqueries,which
suggestscachingasa way to reduceserver workloadandnetworktraffic. In this section,we
focuson thestudyof repeatedqueries,anddiscusshow thelocality in thesequeriesmotivates
differentkindsof caching.

3.1 Query repetition distribution

Amongthe35,538 queriesthatarerepeatedonesin theVivisimotrace,thereare16,162 distinct
queries. This meanson average,eachrepeatedquerywas submitted3.20 times. Similarly,
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Figure 2: Distribution of the query repetitionfrequency (logarithmic scaleson both axes).
QueryIDs aresortedby thenumberof timesbeingrepeated.

eachrepeatedqueryin theExcitetracewassubmitted4.49 times,with 235,607 distinctqueries
among821,315 repeatedones.Interestingly, wefoundthatthequeryrepetitionfrequenciescan
be characterizedby Zipf distributions. Figure2 plots the distributionsof the repeatedquery
frequenciesfor thetraces.Eachdatapoint representsonerepeatedquery, with X axisshowing
queriessortedby therepetitionfrequency: thefirst queryis themostpopularone,thesecond
queryis thesecond-mostrepeatedquery, andsoonuntil wereachthequerynumber16,162and
235,607which wereonly repeateda singletime.

We arealsointerestedin whethertherepeatedquerieswerefrom thesameusersor shared
by differentusers.Out of the 32.05% of the repeatedqueriesin the Vivisimo trace,70.58%
arefrom thesameusers.In theExcitetrace,we have42.75% of therepeatedqueries,of which
37.35% are repeatedby the sameusers. Therefore,about22% and16% of all queriesare
repeatedqueriesfrom thesameusersin theVivisimotraceandtheExcitetracerespectively.

We thencountedthenumberof distinctqueriesthatwererepeatedby morethanoneuser.
Thereare5,675 suchqueriesfrom theVivisimotraceand135,020 suchqueriesfrom theExcite
trace.Thedistributionsof thesequeries,however, arenon-uniformaccordingto thefrequency
of the repetitions.Table2 shows thatqueriesrepeatedat least10 timesaremorelikely to be
sharedby multipleusersthanqueriesrepeatedlessthan10times.In theVivisimotrace,among
the 404 queriesthat wererepeatedat least10 times,78.96% weresharedby differentusers.
For the queriesthat wererepeatedlessthan10 times,only 33.99% wereshared.The same
trendholdsfor theExcitetrace.Amongthe12,071 queriesrepeatedat least10 times,asmany
as99.08% areshared,while only 55.05% aresharedover the queriesrepeatedlessthan10
times.GiventheZipf distributionfollowedby thequeryrepetitionfrequency, therearea small
numberof queriesthatwererepeatedveryfrequently, whichwerebothsharedby differentusers
andrepeatedby thesameusers.Therealsoexist a largenumberof queriesthatwererepeated
only a few times,which weremostlyfrom thesameusers.

Theseresultssuggestthat we shouldcachequeryresultsin differentways. For the small
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Typeof queries Queriesrepeated� 10 times Queriesrepeated 10 times
shared notshared shared notshared

Numberof appearances 319 85 5356 10402
Percentage 78.96% 21.04% 33.99% 66.01%

Table2 (a)Sharenessof thequeriesfrom theVivisimotrace

Typeof queries Queriesrepeated� 10 times Queriesrepeated 10 times
shared notshared shared notshared

Numberof appearances 11,960 111 123,060 100,476
Percentage 99.08% 0.92% 55.05% 45.95%

Table2 (b) Sharenessof thequeriesfrom theExcitetrace

Table2: Sharenessof thequeriesbasedon their repetitionfrequencies.A querywassharedif
it wassubmittedby morethanoneuserin theexactsameform. Otherwise,a querywasonly
submittedby a singleuserandwasnot shared

numberof queriesthat werevery popular, we could cachethemat searchengineservers to
exploit the high degreeof sharenessamongdifferentusers.We couldalsocachethemat the
userside, which would reducethe server processingoverheadsdue to their high repetition
frequencies.For the othertype of queriesthat areonly repeatedby the sameusers,caching
themat serversis not very effective, consideringthe limited server resourcesandthe diverse
requirementsfrom thelargenumberof users.Instead,we couldconsidercachingthesequeries
at theusersideaccordingto theuniquerequirementof eachindividualuser.

3.2 Query locality based on individual user

The querysharenessdistribution indicatesthat querylocality exists with respectto the same
usersaswell asamongdifferentusers.More specifically, mostof the queriesat the long tail
wererepeatedby thesameusers.Therefore,we furtherexplorequerylocality basedon each
individualuser.

Thereare20,220 usersrecordedin theVivisimo trace,of whom6,628 repeatedqueriesat
leastonce.Eachuseron averagerepeated5.36 queries.In theExcite trace,thereare520,883
userswho submittedqueries. Among them,136,626 usersrepeatedqueries,with eachuser
repeating6.01 querieson average.Figure3 plots thepercentageof the repeatedqueriesover
thetotalnumberof queriessubmittedby eachuser. For example,if ausersubmitted10queries
in total,andoutof the10queries,5 wererepeatedonesthathadbeensubmittedbefore,thenthe
userhas50%of therepeatedqueries.Frombothtraces,we observe that,80% to 90% of the
userswho repeatedquerieshadat least20% of therepeatedqueries,andaroundhalf of these
usershadat least50% of therepeatedqueries.

From theseresults,we canseethatnot only a lot of usersrepeatedqueries,but eachuser
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Figure3: Thepercentageof therepeatedqueriesover thenumberof queriessubmittedby each
user(Only thoseuserswhorepeatedqueriesareplottedhere).

alsorepeatedqueriesa lot. Consideringthat 16%to 22%of all querieswererepeatedby the
sameusersandthatsearchengineserverscancacheonly limited data,cachingthesequeriesand
queryresultsbasedonindividualuserrequirementsin amoredistributedwayis thusimportant.
It reducesuserquerysubmissionoverheadsandaccesslatenciesas well asserver load. By
cachingqueriesat theuserside,wealsohave theopportunityto improvequeryresultsbasedon
individualusercontext, which cannotbeachievedby cachingqueriesata centralizedserver.

3.3 Temporal query locality

In this section,we quantifythenotionof temporalquerylocality, that is, thetendency of users
to repeatquerieswithin a shorttime interval. Figure6 shows thenumberof queriesrepeated
within differenttime intervals. Overall, querieswererepeatedwithin shortperiodsof time. In
theVivisimo trace,about65% of thequerieswererepeatedwithin an hour. SincetheExcite
tracelastsfor only 8 hours,asmany as83% of thequerieswererepeatedwithin an hour.

In the Vivisimo trace,thesequeriesweremostly from the sameusers.More specifically,
45.5% of thequerieswererepeatedby thesameuserswithin 5 minutes, which is very short.
Therearealsomany queriesthatwererepeatedover relatively longertime intervals; they are
largely sharedby differentusers.Out of the21.98% of thequeriesthatwererepeatedover a
day, only 5.09% camefrom thesameusers.TheExcitetracegenerallyhasasmallerpercentage
of thequeriesrepeatedby thesameusers.But westill observe thesamepattern:theshorterthe
time interval, themorelikely a querywill berepeatedby thesameuser.

Thesestatisticssuggestthatif cachingqueryresultsis to bedoneat serversor proxies,then
we shouldconsiderlongerperiodof cachingin order to exploit maximumsharenessamong
differentusers.Usually, cachingqueryresultsfor a long time is morelikely to resultin stale
data.Sincethis is to beperformedby theserver, thestaledatacanberemovedin timewhenever
theserverupdatestheresults.If cachingis to beperformedat theuserside,thenshortperiodof
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Figure4: Repeatedquerydistributionwithin differenttime intervals

cachingwouldbeenoughto cover mostof thetemporalquerylocality, which is alsolesslikely
to resultin staledata.

3.4 Multiple-word query locality

Multiple-wordqueriesareimportantbecausethey accountfor about70% of thequeries.Multiple-
wordqueriesalsohave significantlocality, whichwill bediscussedin this section.

Table3 summarizesthestatisticsaboutmultiple-wordqueries.TheExcitetracehasalarger
portionof multiple-wordqueriesthantheVivisimotrace,but bothtraceshave asmany as62%
of the multiple-wordqueriesover the repeatedones. We observe that multiple-wordqueries
arerepeatedlessfrequentlycomparedwith single-wordqueries. In the Vivisimo trace,each
repeatedmultiple-wordquerywassubmitted3.00 timeson average,comparedwith 3.63 times
for single-wordcases.In the Excite trace,eachrepeatedmultiple-wordquerywassubmitted
3.77 times,comparedwith 7.12 timesfor single-wordcases.

Wealsoobserve thatmultiple-wordquerylocality mostlyexistsamongthesameusers,that
is, multiple-wordquerieshave lessdegreeof shareness.Table4 showsthecomparisonbetween
multiple-wordqueriesandsingle-wordquerieswith respectto theirdegreesof shareness.From
both traces,we can seethat multiple-word queriesare lesslikely to be sharedby different
users.Eachsharedmultiple-wordqueryalsotendsto besharedby fewer users.This is easily
explainedbecausethechancesfor differentusersto submitthesamemultiple-wordqueriesare
muchsmallerthanthosefor single-wordqueries.

Fromtheabove results,wecanseethatmultiple-wordquerylocality is significant.Caching
multiple-wordqueriesis morepromisingbecauseit takesmoretime to computemultiple-word
queryresults.Sincemultiple-wordquerieshave lessdegreeof shareness,we couldcachethem
mainlyat theuserside.
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Numberof appearance Percentage
Vivisimo Excite Vivisimo Excite

Multiple wordqueries 77,181 1,429,618 69.61% 74.42%
(over thenumberof thequeries)

Uniquemultiplewordqueries 55,193 924,546 73.26% 84.07%
(over thenumberof theuniquequeries)

Multiple wordqueriesthatwere 21,995 505,249 61.89% 61.52%
repeated (over thenumberof therepeatedqueries)
Unique multiple word queries
that

11,020 182,335 68.18% 77.39%

wererepeated (over the number of unique repeated
queries)

Unique multiple word queries
that

3,181 101,098 5.76% 11%

were submittedby more than
oneuser

(over thenumberof uniquemultiple word
queries)

Table3: Multiple-wordquerysummary

Typeof queries Sharedmultiple-wordqueries Sharedsingle-wordqueries
Vivisimo Excite Vivisimo Excite

Percentage 5.76% 10.93% 12.28% 19.37%
Numberof users 2.53 3.95 3.24 7.38

Table4: Thecomparisonbetweenmultiple-wordqueriesandsingle-wordquerieswith respect
to thedegreesof thesharenessin bothtraces.’Percentage’meanstheportionof sharedmultiple-
word or single-wordqueriesover the total numberof multiple-wordor single-wordqueries.
’Numberof users’meanstheaveragenumberof userssharingeachsuchquery.
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3.5 Users with shared IP addresses

Someusersusedial up servicessuchasAOL to accessthe Internet. For thoseusers,their IP
addressesaredynamicallyallocatedby DHCPservers.Unfortunately, thereis nocommonway
to identify thesekindsof users.This impactsouranalysisin two ways.First,becausedifferent
userscansharethesameIP addressat differenttimes,their queriesseemlike they comefrom
the sameuser, leadingto an overestimateof the querylocality from the sameusers.Second,
becausethesameuserscanusedifferentIP addressesat differenttimes,it is alsopossiblefor
us to underestimatethe querylocality from the sameusers.But sinceAOL clientswill have
keyword’AOL’ in theiruser-agentfields,whichwasrecordedin theVivisimotrace,weareable
to identify AOL userswhomighthavesharedIP addressesin theVivisimotrace.Wefoundthat
amongthe110,881queriesreceived,thereareonly 2,949 queriessubmittedby 749 AOL clients.
And only threeof themarefrequentuserswhosubmittedmorethan70 queries.Therefore,we
believeour resultsabouttheVivisimotracearenotbiasedby theseusers.

4 User lexicon analysis and its implications

In this section,we analyzetheuserquerylexicons.We alsoproposepossiblewaysto prefetch
queryresultsfor eachindividualuser, by recognizingtheirmostfrequentlyusedterms.

4.1 Distribution of the user lexicon size

We noticedthattheword frequency in thetracecannotbecharacterizedby a Zipf distribution,
which wasalsonoticedin [6]. Thegraphfalls steeplyat thebeginningandhasanunusually
long tail.

Insteadof looking at the overall lexiconsusedin the trace,we groupall the wordsused
by eachuserindividually, andexaminetheuserlexicon sizedistribution. Amongthe249,541
wordsin the queriesfrom the Vivisimo trace,thereare51,895 distinct words. In the Excite
trace,thereare350,879 distinctwordsamongthe5,095,189 wordsfrom thequeries.Wenotice
thatsomeusersin theExcite tracesubmitteda largenumberof queries,for example,oneuser
submitted130,220queriesduring the 8 hours. Theseusersarevery likely to be meta-search
enginesinsteadof normalusers.Thuswe ignorethe 60 userswho submittedmorethan100
queriesin theExcite traceandexaminethe remaininguserson their lexicon sizes.Compared
with theoverall lexiconsize,theuserlexiconsizesaremuchsmaller. Thelargestuserlexicons
in the two traceshave only 885 wordsand202 wordsrespectively. We alsofind that theuser
lexicon size doesnot follow a Zipf distribution. Figure5 plots the distributionsof the user
lexiconsize.Thegraphshaveheavy tails,meaningthemajorityof theusershavesmalllexicons.

We alsolookedat the relationshipbetweenthe numberof queriessubmittedby eachuser
and the correspondinglexicon size. For both traces,the more queriessubmittedby a user,
the larger the user’s lexicon. Figure7 shows the relationshipbetweenthe numberof queries
submittedby a userandthecorrespondinguserlexicon sizebasedon theVivisimo trace.The
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Figure5: Distribution of the userlexicon sizeswith logarithmicscaleson both axes. X axis
denotesthe userIDs sortedby the lexicon sizes. Whenplotting the Excite trace,we remove
thoseuserswhosubmittedmorethan100queriesover the8-hourperiod.Thoseusersarevery
likely to bemeta-searchenginesor robotsinsteadof normalusers.

Figure6: Repeatedquerydistributionwithin differenttime intervals

0 500 1000 1500 2000
0

50

100

150

200

250

300

350

400

User ID (sorted by lexicon size)

User lexicon size                      
Number of queries submitted by the user

The user with a small lexicon size 
but submitted many queries 

Figure7: Userlexiconsizesandthenumberof thequeriesthey submittedin theVivisimotrace.
Solid line plots the sorteduserlexicon sizes. Dashedline plots the numbersof the queries
submittedby thecorrespondingusers.For scalereasons,this figureis a zoomedin part from a
completefigure,but thepatternshown hereis generalfor thecompletefigureaswell.

userlexicon sizesarein proportionto thenumberof queriessubmittedby theusers.But there
arealsoa few exceptions,wheretheuserssubmitteda lot of queriesout of small lexicons.The
Excitetraceshows thesamepatternandis thusnotplottedhere.
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Numberof fre-users 157
Numberof queriessubmittedby fre-users 25,722
Numberof fre-userswith fre-lexiconsize � 1 153
Numberof fre-userswith fre-lexiconsize � 20 128

Table5: Fre-usersstatisticsin the Vivisimo trace. Fre-usersaredefinedas thoseuserswho
submittedat least70 queriesover the 35 days. Thoseusersvisited Vivisimo frequentlyand
submittedat least2 querieseachdayon average.Fre-lexicon is definedasthesetof termsthat
wereusedby thecorrespondinguserfor at leastfive times.

4.2 Analysis of frequent users and their lexicons

Thoughsomeusershave large lexicons, they do not useall of the wordsuniformly. We are
interestedin how many wordsaremost frequentlyusedin the queriesfor eachuser. For the
usersin theVivisimotracewhosubmittedonly a few queriesover the35days,calculatingtheir
frequentlyusedwordsis not meaningful.Similarly, we do not look at theusersin theExcite
traceeitherbecausethe tracelastsfor too shorta period. Sowe only focuson thosefrequent
usersin theVivisimo trace. We call a usera fre-userif theusersubmittedat least70 queries.
Thefre-usersthussubmittedat least2 querieseachdayonaverage.Wealsodefinea fre-lexicon
for eachfre-user. Thefre-lexiconconsistsof thewordsthatwereusedat leastfive timesby the
correspondingusers

Table5 shows thestatisticalsummaryaboutthe fre-usersin theVivisimo trace.Thereare
157 fre-users,amongwhom, 153 fre-usershave non-emptyfre-lexicons. Although fre-users
accountfor lessthan1% of theusers,they submitted25,722 queriesin total,whichaccountfor
23.20%, asignificantportionover thetotalnumberof queries.Sincetheseusersarenon-trivial,
cachingandimproving queryresultsbasedon their individual requirementlookspromising.

We alsoobserve from the tablethatmostof the fre-usershadsmall fre-lexicons. Thuswe
areinterestedin how many queriesweregeneratedpurelyby thewordsfrom fre-lexicons. If
theuserstendto re-useasmallnumberof wordsveryoftento form queries,thenwecanpredict
queriesandprefetchqueryresultsby simply enumeratingall the word combinations.Figure
8 (a) plots the numberof queriesgeneratedfrom fre-lexicons. Therearea small numberof
fre-userswith relatively larger fre-lexicons, from which they submitteda lot of queries. So
prefetchingbasedon fre-lexicons for theseuserswill help reducethe numberof queriesto
be submitteddramatically. But we alsoneeda large cachesizeto storeall the possibleword
combinationsdueto therelatively largefre-lexicon size. Therearealsoquitea few userswho
generateda lot of queriesfrom smallfre-lexicons.For example,theuserspecifiedin thefigure
generated106 queriesfrom an 8 word fre-lexicon. For theseusers,prefetchingaccordingto
fre-lexiconswouldbemosteffective.

Sincethemajority of querieshave fewer thanfive terms,it is interestingto seehow many
querieswith fewerthanfivetermsweregeneratedfrom fre-lexicons.Figure8 (b) showsboththe
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percentageof thequeriesfrom fre-lexiconsandthepercentageof thequeriesfrom fre-lexicons
with lessthanfive terms.Theadditionof theextraconstraintsimposedon thenumberof terms
doesnot affect the resultsfor mostof the fre-users.Therefore,we could just enumeratethe
word combinationsusingno morethanfour terms,which would greatlyreducethenumberof
queriesto beprefetched.

5 Discussions on Research directions

Although the Vivisimo traceand the Excite tracewere collectedindependentlyat different
times,over differenttemporalperiods,andwith differentuserpopulations,their statisticalre-
sultsaresimilar. In this section,we review theseresultsanddiscusstheir implicationson fu-
tureresearchdirections.We focuson threeaspects:cachingsearchengineresults,prefetching
searchengineresults,andimproving queryresultrankings.

5.1 Caching search engine results

With
�
�����������

of repeatedqueries,cachingsearchengineresultsis a non-trivial problem.
Cacheplacementis oneof thekey aspectsof theeffectivenessof caching.Queryresultscanbe
cachedon theservers,theproxies,andtheclients. For optimalperformance,we shouldmake
decisionsbasedon thefollowing aspects:

1. Scalability. A cacheschemeshouldscalewell with theincreasingsizeandthedensityof
theInternet.
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Level of caching Servercaching Proxycaching Usersidecaching
Scalability worst medium best
Performanceimprovement worst medium best
Hit rateandshareness best medium worst
Overhead small large small
Opportunityfor otherbenefits least medium most

Table6: Comparisonsbetweendifferentcacheplacementschemes.

2. Performanceimprovement.This includesthe amountof reductionin server workload,
useraccesslatency, andnetworktraffic.

3. Hit rateandshareness.Thehigherthehit rate,themoreefficient thecaching.We would
alsolike cachedqueryresultsto besharedamongdifferentusersof commoninterests.

4. Overhead.Theoverheadsincludethesystemresourcesdevotedfor cachingandtheextra
networktraffic induced.

5. Opportunityfor otherbenefits.By disseminatinguserrequestsamongcaches,whatother
benefitscanweachieve with theexistenceof caching?

Table6 comparesthe prosandconsof differentcacheplacementschemesin the general
case.(1) Server cachinghasonly limited systemresourceavailable,so it doesnot scalewell
with theincreasingsizeof theInternet.In addition,thoughwe cansave theredundantcompu-
tation,we cannotreducethenumberof requestsreceivedby serversandthereductionin user
accesslatency is alsovery limited. However, server cachinghassmall overhead.Moreover,
it allows maximumquerysharenessamongdifferentusersandthe hit ratewould be high by
cachingpopularqueries. (2) Proxy cachingis effective to reduceboth server workloadand
networktraffic. In thecaseof cachingqueryresults,this assumesthattheusersnearbya proxy
wouldsharequeriesto resultin largehit rate.However, oneof themaindisadvantagesof proxy
cachingis thesignificantoverheadof placingdedicatedproxiesamongthe Internet. (3) User
sidecachinghasthebestperformanceimprovementin caseof acachehit becausetheredundant
userrequestswill notbesentoutat all. Comparedwith thelimited systemresourcesatservers,
thesumof eachindividual userresourceis almostinfinite. Sousersidecachingalsoachieves
the bestscalability. Becausethe overheadof cachingcanbe amortizedto a large numberof
users,theoverheadat eachusersideis small. More importantly, with usersidecaching,it is
now possibleto prefetchor improve queryresultsbasedon individualuserrequirement.How-
ever, no sharenesswill beexploitedwith usersidecaching.Thusif queriesaremostlyshared
insteadof beingrepeatedby thesameusers,wewouldhave low hit ratein suchcase.

Theabovediscussionindicatesthatthedegreeof sharenessis importantto decidewherewe
shouldcachequeryresults. In oneextremecasewhereusersnever repeattheir own queries,
we reachthe maximumdegreeof shareness.In suchcase,we shouldcachequeryresultsat
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serversor proxiesbecauseusersidecachingwould resultin zerohit rate. In anotherextreme
casewhereusersneversharequeries,cachingqueryresultsat usersidewouldbemosthelpful.

Our traceanalysisresultsshow that,amongall queries,repeatedqueriesaccountfor 32%
to 42%,while repeatedqueriesfrom thesameusersaccountfor 16%to 22%. Thesignificant
portion of the queriesrepeatedby the sameusersand the non-trivial differencebetweenthe
abovetwo percentagessuggestbothserver/proxycachingandusersidecaching.For thequeries
repeatedonly by thesameusers,wecancachethematusersidefor efficiency, while therestof
therepeatedqueriescanbecachedateitherserversor proxies.Sincewedonotknow theactual
IP addressesof the usersin both traces,we cannotfurther distinguishthe queriesthat canbe
sharedby nearbyusersandthuscanbecachedatproxies.But it is clearfrom thetracesthatthe
percentageof suchquerieswouldbebetween16%and42%.Therefore,weleaveproxycaching
asa futurework for searchenginesthemselvesto determinewhetherandwhereto placesuch
proxies.

Sincemultiple-wordquerieshavelessdegreeof shareness,wealsosuggestcachingmultiple-
word queriesmainly at theuserside. Therefore,by cachingonly popularsingle-wordqueries
atservers/proxies,wecanachieve largerhit ratesandgreatlyreducetherequiredsystemspace.

Anotherimportantquestionaboutcachingis how longweshouldcachequeryresults.Tem-
poralquerylocality indicatesthatmostof thequeriesarerepeatedwithin shorttime intervals.
Soin general,cachingqueryresultsfor shortperiodsshouldwork well. Moredetailedanalysis
in Section3.3shows thattheshortertimeinterval, themorelikely for aqueryto berepeatedby
thesameusers.Thusfor usersidecaching,cachingqueryresultsfor hourswill beenoughto
cover thequerylocality existing on thesameusers.This alsohelpsto remove or updatestale
queryresultsin time. Therealsoexist a non-trivial portionof queriesrepeatedover relatively
longertime intervalsandthesequeriesaremainly sharedamongdifferentusers.So if caching
is to be doneat serversor proxies,we canconsiderlonger-term cachingsuchasa coupleof
days.

5.2 Prefetching search engine results

Ouruserlexiconanalysisin Section4 suggeststhatprefetchingqueryresultsbasedonuserfre-
lexiconsis promising.Prefetchinghasalwaysbeenanimportantmethodto reduceuseraccess
latency. In thecaseof prefetchingsearchengineresults,it canbeperformedat bothuserside
or proxies.

Cachingqueryresultsat usersideprovidesusefulinformationaboutuserinterest.For this
reason,usersideprefetchingis naturalandworthlookingat. Fromtheuserlexiconanalysis,we
observe thatthemajorityof theuserlexiconsizesaresmall.Frequentuserswhosubmittedalot
of queriesusuallyuseasmallsubsetof wordsmoreoftenthanotherwords.Soastraightforward
way of prefetchingis to enumerateall the word combinationsfrom fre-lexiconsandprefetch
the correspondingqueryresults. Sincequeriesareusuallyshort,we canskip querieslonger
than four termsto reducethe prefetchingoverheadwhile achieving approximatelythe same
performanceimprovement.For example,a 10 word fre-lexicon needsto prefetch385queries
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usingtheabove naive algorithm,which will costlessthan20 minutesnetworkdownloadtime
using56Kbpsmodemandabout8M disk for storage.Theseoverheadsaretrivial considering
thatanormalPCtodayis idle about70%of thetimeonaverageandthenormaldisksizeis tens
of Gigabytes.

Prefetchingcanalso be performedat proxies. In suchcases,server’s global knowledge
aboutuserquerypatternscanbeutilizedto decidewhatto prefetchandwhento prefetch.Since
proxiesallow querysharenessamongdifferentusers,exploring how to achieve maximumhit
ratein suchcasewouldalsobeaninterestingproblemfor futureresearch.

5.3 Improving query result rankings

Althoughtoday’ssearchenginesoftenreturntensof thousandsof resultsfor a userquery, only
afew resultswill beactuallyreviewedby theusers.Section2.3showsthateachuseronaverage
reviews lessthantwo pagesof results.Thusimproving queryresultrankingsbasedon individ-
ual userrequirementis moreimportantthanever. Thepersonalnatureof ’relevance’requires
incorporatingusercontext to find desiredinformation.Becausecentralizedsearchenginespro-
vide servicesto millions of users,it is impracticalto customizeresultsfor eachuser. Some
specializedsearchenginesdo offer searchresultswhich aredifferentthanstandardfor some
specializeduserrequirements.But noneof themallowsusersto definetheirown requirements
at will. With userside/proxycaching,it is now possibleto re-rankthe returnedsearchengine
resultsbasedon theuniqueinterestof individual user. For example,a naive algorithmwould
beto increasetheranksof theWebpagesvisitedby theuseramongthenext queryresults.We
canalsoexploreotheralgorithmsandintegratethemwith cachingto customizesearchengine
resultsfor individualuser.

6 Conclusions

Cachingis animportanttechniquefor reducingserverworkloadanduseraccesslatency. In this
paper, we investigatedtheissueof whethercachingmightwork in thecaseof searchengines,as
it doesin many otherareas.We studiedtwo realsearchenginetracesandinvestigatedthefol-
lowing threequestions:(1) Whereshouldwe cachesearchengineresults?At servers,proxies,
or userside?(2) How longshouldwecachesearchresults?Or doquerieshavestrongtemporal
querylocality? (3) Whataretheotherbenefitsof cachingsearchengineresults?

Our analysisof both the Vivisimo searchenginetraceandthe Excite searchenginetrace
indicatethat: (1) Querieshave significantlocality. Queryrepetitionfrequency follows a Zipf
distribution. Thepopularquerieswith high repetitionfrequenciesaresharedamongdifferent
usersandcanbecachedat serversor proxies.Therearealsoabout16%to 22%of thequeries
repeatedby thesameusers,which shouldbecachedat userside. Multiple-word querieshave
lessdegreeof sharenessand shouldbe cachedmainly at userside. (2) The majority of the
repeatedqueriesarereferencedagainwithin short time intervals. Thereis alsoa significant
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portion of queriesthat arerepeatedwithin relatively longer time intervals, which are largely
sharedby differentusers.Soif cachingis to bedoneat userside,short-termcachingfor hours
will be enoughto cover query temporallocality, while server/proxycachingshouldbaseon
longerperiodssuchasdays.(3) Mostof theusershavesmalllexiconswhensubmittingqueries.
Frequentuserswho submitteda lot of searchrequeststendto re-usea small subsetof words
to form queries. Thuswith proxy or usersidecaching,prefetchingbasedon userlexicon is
promising. Proxy or usersidecachingalsoprovide us with opportunitiesto improve query
resultsbasedon individualuserrequirement,which is animportantfutureresearchdirection.
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